
SUPPLEMENT TO
VeRoViz: A Vehicle Routing Visualization Toolkit

This document provides additional details, via an example, of the VeRoViz package de-
scribed in the paper titled “VeRoViz: A Vehicle Routing Visualization Toolkit.” This example
was too lengthy to include in the paper itself.
Section 1 contains code describing some of the more commonly-used VeRoViz Python func-

tions. This includes the functionality to generate nodes (sample problems), obtain travel time
and distance matrices, visualize vehicle routes on two-dimensional maps, and create three-
dimensional “movies” of vehicle routing solutions. Section 2 describes some of VeRoViz’s
“utility” functions.
A Python Jupyter notebook, allowing readers to run the code described below, is available

at https://veroviz.org/documentation.html.

1

https://veroviz.org/documentation.html


1 Demonstration
This section demonstrates several VeRoViz functions via a simple vehicle routing example
involving a truck and a drone in a last-mile delivery problem. The demonstration begins by
creating a test problem and continues through displaying a solution.

1.1 Generate nodes
Our first task is to define the locations of a depot (where the truck and dronewill originate) and
the customers. These specific locations could be easily selected in Sketch, or they could be
imported from existing data. However, this example demonstrates how to programmatically
generate test problems (via Python).
We begin by defining regions where the depot and customer nodes will be generated.

In this example, the depot will be located within some polygon, which we drew in Sketch
and exported to Python. The customers will be normally distributed around Amherst, NY,
with a standard deviation of 1.5 miles. The Python code for defining (and displaying) these
geographic regions, using the veroviz package, is shown in Figure 1.

1 import veroviz as vrv

1 # Define a region within which the depot will be generated. Coordinates were generated in Sketch:
2 depotRegion = [[42.99, -78.72], [42.96, -78.71], [42.97, -78.68], [43.01, -78.69]]
3
4 # Define a center point for customers. The geocode() function returns [lat, lon] coordinates.
5 amherst = vrv.geocode('Amherst, NY')
6
7 # Define a radius for 1 standard deviation, in units of meters
8 radiusMeters = vrv.convertDistance(1.5, 'miles', 'meters')

1 # Draw the depot region polygon, and add a text label:
2 myMap = vrv.createLeaflet(boundingRegion = depotRegion)
3 myMap = vrv.addLeafletText(mapObject = myMap, text = 'Depot Region', fontColor = 'black',
4 anchorPoint = depotRegion[3])
5
6 # Draw the customer region with circles, and label according to standard deviation:
7 myMap = vrv.addLeafletCircle(mapObject = myMap, center = amherst,
8 radius = 3*radiusMeters, fillColor = 'red')
9 myMap = vrv.addLeafletText(mapObject = myMap, text = '3 std. devs.', fontColor = 'black',
10 anchorPoint = vrv.pointInDistance2D(amherst, 180, 3*radiusMeters))
11
12 myMap = vrv.addLeafletCircle(mapObject = myMap, center = amherst,
13 radius = 1*radiusMeters, fillColor = 'blue')
14 myMap = vrv.addLeafletText(mapObject = myMap, text = '1 std. dev.', fontColor = 'black',
15 anchorPoint = vrv.pointInDistance2D(amherst, 180, radiusMeters))
16
17 myMap

Figure 1: Defining the regions for the depot and customer locations.

2



Next, we generate the nodes from the defined regions, including one depot (node 0) and
five customers (nodes 1–5). The generateNodes() function produces a VeRoViz “nodes”
dataframe, which contains information about the location of each node, as well as names,
and formatting for the appearance of the nodes on a map.
VeRoViz can generate nodes from three different types of distributions: uniformly dis-

tributed within a bounding region, normally distributed, or normally distributed and bounded
within a polygon. All of the nodes in this example are snapped to the road network, the data
for which is provided (in this case) by the “OSRM-online” data provider. Code for generating
and displaying the nodes for our example is shown in Figure 2.

1 # Generate a depot within the polygon boundary
2 myNodes = vrv.generateNodes(numNodes = 1, startNode = 0, nodeType = 'depot', snapToRoad = True,
3 nodeDistrib = 'uniformBB', dataProvider = 'OSRM-online',
4 nodeDistribArgs = {'boundingRegion': depotRegion})

1 # Also generate 5 customer nodes, normally distributed, with custom circle markers
2 myNodes = vrv.generateNodes(initNodes = myNodes, numNodes = 5, startNode = 1,
3 nodeType = 'customer', snapToRoad = True,
4 leafletIconPrefix = 'custom', leafletIconType = '12-white-12',
5 leafletColor = 'green', nodeDistrib = 'normal', dataProvider = 'OSRM-online',
6 nodeDistribArgs = {'center': amherst, 'stdDev': radiusMeters})

1 myNodes # Display nodes dataframe

id lat lon altMeters nodeName nodeType popupText leafletIconPrefix leafletIconType leafletColor leafletIconText ...

0 43.003922 -78.697982 0.0 Depot depot 0 glyphicon info-sign blue 0 ...

1 42.951958 -78.795942 0.0 Cust. 1 customer 1 custom 12-white-12 green 1 ...

2 42.974264 -78.820277 0.0 Cust. 2 customer 2 custom 12-white-12 green 2 ...

3 42.974697 -78.798269 0.0 Cust. 3 customer 3 custom 12-white-12 green 3 ...

4 42.998253 -78.794730 0.0 Cust. 4 customer 4 custom 12-white-12 green 4 ...

5 42.993819 -78.802980 0.0 Cust. 5 customer 5 custom 12-white-12 green 5 ...

1 vrv.createLeaflet(mapObject = myMap, nodes = myNodes) # Add nodes to previous map

Figure 2: Generate nodes from a polygon region (for the depot) and according to a normal
distribution (for the customers).

3



1.2 Travel time and distance matrices
Before solving our routing problem, we want to know the distances between all pairs of nodes.
VeRoViz provides the getTimeDist2D() function to capture matrices for ground-based (2-
dimensional) travel time and distance between nodes. In this example, we seek these values
based on the fastest time between nodes; alternatively, we could make the request based on
the shortest distance. Available route type options for each data provider are given in Table
1.

Table 1: Data providers used in VeRoViz

[none]

M
apQ

uest

O
SR

M

O
R
S
-online

O
R
S
-local

pgR
outing

U
SG

S

E
levation-A

P
I

O
penW

eatherM
ap

Data location online online online local local online online online
Requires API Key X X X X
Fastest X X X X X
Shortest X X
Pedestrian X X X
Cycling X X
Truck X X
Wheelchair X
Euclidean X

R
oute

Types

Manhattan X
Snap nodes to Road? X X X X X
Isochrones X
Elevation X X X
Geocode X X X
Weather X

For the drone in our example, we use the getTimeDist3D() function, with the default
“square” profile (i.e., the drone takes off and lands vertically). Other flight profiles are shown
in Figure 3. Currently, VeRoViz determines the times and distances based on simple geome-
tries, ignoring obstacles, terrain, or no-fly zones. Since the drone in this problem only travels
between the depot and a single customer at a time, a one-to-many distance matrix (i.e., a sin-
gle row of generated data) is sufficient. In this example, the total travel time from the depot
to customer 4 is given by timeSecUAV[0,4] = 514.16 seconds.

Figure 3: Available drone flight profiles include “square” (yellow), “trapezoidal” (white), “tri-
angular” (green) and “straight” (red).

Code for generating the travel matrices for the truck and drone is presented in Figure 4.

4



1 # Travel Matrices -- Truck
2 # Find truck's travel time (in seconds) and distance (in meters) between all pairs of nodes.
3 [timeSec, distMeters] = vrv.getTimeDist2D(nodes=myNodes, routeType='fastest', dataProvider='OSRM-online')

1 vrv.convertMatricesDictionaryToDataframe(distMeters) # Display as a matrix/table

0 1 2 3 4 5

0 0.0 12880.3 14166.4 11843.5 10578.6 12297.0

1 13308.3 0.0 4956.1 2932.4 6660.2 6550.6

2 13619.9 4956.1 0.0 3480.7 5355.6 5427.2

3 11327.6 3068.0 3549.0 0.0 3323.3 3135.0

4 10773.9 6838.3 5390.6 3501.4 0.0 3186.5

5 21690.9 12667.5 8869.5 12266.5 12058.1 0.0

1 # Travel Matrices -- Drone
2 # We only need departures from the depot (the return trip will be assumed symmetric)
3 [timeSecUAV, groundDistUAV, totalDistUAV] = vrv.getTimeDist3D(
4 nodes = myNodes, matrixType = 'one2many', fromNodeID = 0,
5 takeoffSpeedMPS = vrv.convertSpeed(10, 'miles', 'hr', 'meters', 'sec'),
6 cruiseSpeedMPS = vrv.convertSpeed(40, 'miles', 'hr', 'meters', 'sec'),
7 landSpeedMPS = vrv.convertSpeed( 5, 'miles', 'hr', 'meters', 'sec'),
8 cruiseAltMetersAGL = vrv.convertDistance(350, 'feet', 'meters'))

1 vrv.convertMatricesDictionaryToDataframe(timeSecUAV) # Display as a matrix/table

0 1 2 3 4 5

0 0.0 622.870915 659.008182 563.704278 514.163591 554.493559

Figure 4: Calculating travel time and distance matrices for ground-based (2D) and airborne
(3D) vehicles.

1.3 Generate a solution
The next step would typically be to solve the problem. Because VeRoViz is not a solver, for
demonstration purposes we will manually generate a solution that simply describes the se-
quence of node visits for both the truck and the drone (shown in Figure 5). In practice, this
is the step where researchers would apply their own algorithms to generate a solution.

1 # We'll manually create a solution, as a sequence of node visits for each vehicle.
2 route = {}
3 route['drone'] = [0, 4, 0, 5, 0]
4 route['truck'] = [0, 3, 1, 2, 0]

Figure 5: A hard-coded solution, describing the sequence of nodes visited by the truck and
the drone. Since VeRoViz is not a solver, users will need to create their own solutions.

5



1.4 Visualizing vehicle routes with simple arcs
With a solution to the problem in hand, it is often useful to visualize the vehicle routes on a
map. VeRoViz provides the createArcsFromNodeSeq() function to easily generate an “arcs”
dataframe from a route defined by node visits. The arcs dataframe contains information about
the origin and destination of each route segment for each vehicle, but it does not include
arrival or departure times. Arcs dataframes are useful for simple graphics, where detailed
turn-by-turn directions are not necessary; such details are more appropriately captured in
“assignments” dataframes, as described in Section 1.5.
The arcs dataframe also captures the styling of the arcs (e.g., colors and line styles) to be

displayed on a Leaflet map via the createLeaflet() function. We use curved arcs for the
drone to more easily observe the out-and-back routes. The resulting Leaflet map object is
interactive; users may zoom in, or click on nodes and arcs to display additional information
(e.g., node names or altitude) stored in the arcs dataframe. The map may be also be saved as
an HTML file for later use or sharing.
The code for translating the solution to an arcs dataframe, and displaying the vehicle routes

on a map, is shown in Figure 6. Note that the truck visits 3 customer nodes, resulting in 4
arcs; the drone visits two customers, resulting in 4 arcs.

1 # Convert the truck's route to an "arcs" dataframe:
2 myArcs = vrv.createArcsFromNodeSeq(nodeSeq = route['truck'], nodes = myNodes, objectID = 'Truck')

1 # Convert the drone's route to an "arcs" dataframe, using dashed curved arcs:
2 myArcs = vrv.createArcsFromNodeSeq(initArcs = myArcs, nodeSeq = route['drone'], nodes = myNodes,
3 objectID = 'Drone', leafletColor = 'blue', leafletStyle = 'dotted',
4 leafletCurveType = 'bezier', leafletCurvature = 8, cesiumColor = 'blue')

1 myArcs # Display contents of the arcs dataframe

odID objectID startLat startLon endLat endLon leafletColor leafletWeight leafletStyle leafletOpacity leafletCurveType ...

1 Truck 43.003922 -78.697982 42.974697 -78.798269 orange 3 solid 0.8 straight ...

2 Truck 42.974697 -78.798269 42.951958 -78.795942 orange 3 solid 0.8 straight ...

3 Truck 42.951958 -78.795942 42.974264 -78.820277 orange 3 solid 0.8 straight ...

4 Truck 42.974264 -78.820277 43.003922 -78.697982 orange 3 solid 0.8 straight ...

5 Drone 43.003922 -78.697982 42.998253 -78.794730 blue 3 dotted 0.8 bezier ...

6 Drone 42.998253 -78.794730 43.003922 -78.697982 blue 3 dotted 0.8 bezier ...

7 Drone 43.003922 -78.697982 42.993819 -78.802980 blue 3 dotted 0.8 bezier ...

8 Drone 42.993819 -78.802980 43.003922 -78.697982 blue 3 dotted 0.8 bezier ...

1 vrv.createLeaflet(nodes = myNodes, arcs = myArcs)

Figure 6: Creating an arcs dataframe from a sequence of node visits (i.e., a route). The
resulting arcs dataframe can be displayed in a Leaflet map.

6



1.5 Visualizing routes with detailed assignments dataframes
While the “arcs” dataframe is sufficient for simple straight-line connections between nodes,
the VeRoViz “assignments” dataframe holds detailed time-based turn-by-turn routing infor-
mation on road networks. These routes may be visualized on a static map using the create-
Leaflet() function. However, the additional details contained in the assignments dataframe
(including 3D models of vehicles) allow the generation of time-dynamic 3D movies in Cesium.
Assignments dataframes also allow representation of static objects, such as vehicles that are
stationary during a service stop or even packages that are delivered.
The process of generating the assignments dataframe associated with the solution to our

test problem is described in Figure 7. For the truck, we employ the createAssignments-
FromArcs2D() function to easily extend our previously-created arcs dataframe into an as-
signments dataframe. We have added a 30-second service time at each node. The resulting
assignments dataframe will contain the turn-by-turn routing on the road network. For the
drone, we wish to differentiate the segments of the route where the drone is carrying a par-
cel. We will iteratively call the addAssignment3D() function for each origin-destination pair.
VeRoViz provides several other functions to help the user create a new assignments

dataframe, or append routes into an existing assignments dataframe. These are documented
at https://veroviz.org/docs/veroviz.createAssignments.html.

1 # Turn-by-turn road network travel for the truck:
2 myAssignments = vrv.createAssignmentsFromArcs2D(arcs = myArcs[myArcs['objectID'] == 'Truck'],
3 modelFile = 'veroviz/models/ub_truck.gltf',
4 routeType = 'fastest', dataProvider = 'OSRM-online',
5 serviceTimeSec = 30, ganttColor = 'orange')

1 # Create assignments for the drone:
2 endTimeSec = 0.0
3 i = route['drone'][0]
4 for j in route['drone'][1:]:
5 model = 'drone_package.gltf' if (myNodes['nodeType'][i] == 'depot') else 'drone.gltf'
6
7 [myAssignments, endTimeSec] = vrv.addAssignment3D(
8 initAssignments = myAssignments, objectID = 'Drone',
9 modelFile = 'veroviz/models/' + model,
10 startLoc = list(myNodes[myNodes['id'] == i][['lat', 'lon']].values[0]),
11 endLoc = list(myNodes[myNodes['id'] == j][['lat', 'lon']].values[0]),
12 startTimeSec = endTimeSec,
13 takeoffSpeedMPS = vrv.convertSpeed(10, 'miles', 'hr', 'meters', 'sec'),
14 cruiseSpeedMPS = vrv.convertSpeed(40, 'miles', 'hr', 'meters', 'sec'),
15 landSpeedMPS = vrv.convertSpeed( 5, 'miles', 'hr', 'meters', 'sec'),
16 cruiseAltMetersAGL = vrv.convertDistance(350, 'feet', 'meters'),
17 leafletColor = 'blue', leafletStyle = 'dotted',
18 leafletCurveType = 'bezier', leafletCurvature = 2, cesiumColor = 'blue')
19
20 i = j

Figure 7: Creating an assignments dataframe from arcs data.

7

https://veroviz.org/docs/veroviz.createAssignments.html


Figure 8 shows the resulting assignments dataframe. The odID column provides a unique
identifier for each origin-destination (OD) pair. For the truck, a given OD pair will contain
numerous individual straight-line segments (so-called “shapepoints”) comprising the route on
the road network. For the drone, the OD pair is decomposed into the different flight phases
(e.g., vertical takeoff to altitude, cruising at altitude, and vertical landing). The assignments
dataframe can be visualized as a Leaflet map, where the road-based route of the truck is
observed.

1 myAssignments

odID objectID modelFile startTimeSec startLat startLon startAltMeters endTimeSec endLat endLon ...

0 1 Truck /ub_truck.gltf 0.000000 43.003922 -78.697982 0 5.569717 43.003334 -78.697459 ...

1 1 Truck /ub_truck.gltf 5.569717 43.003334 -78.697459 0 8.673244 43.003326 -78.696926 ...

2 1 Truck /ub_truck.gltf 8.673244 43.003326 -78.696926 0 34.903860 43.000019 -78.696908 ...

3 1 Truck /ub_truck.gltf 34.903860 43.000019 -78.696908 0 66.536051 42.996031 -78.696930 ...

4 1 Truck /ub_truck.gltf 66.536051 42.996031 -78.696930 0 74.888309 42.994978 -78.696937 ...

... ... ... ... ... ... ... ... ... ... ... ...

209 8 Drone /drone_package.gltf 1052.190879 43.003922 -78.697982 106.68 1535.093350 42.993819 -78.802980 ...

210 8 Drone /drone_package.gltf 1535.093350 42.993819 -78.802980 106.68 1582.820742 42.993819 -78.802980 ...

211 9 Drone /drone.gltf 1582.820742 42.993819 -78.802980 0 1606.684437 42.993819 -78.802980 ...

212 9 Drone /drone.gltf 1606.684437 42.993819 -78.802980 106.68 2089.586909 43.003922 -78.697982 ...

213 9 Drone /drone.gltf 2089.586909 43.003922 -78.697982 106.68 2137.314301 43.003922 -78.697982 ...

214 rows x 34 columns

1 vrv.createLeaflet(nodes = myNodes, arcs = myAssignments)

Figure 8: Viewing the resulting assignments dataframe, with a map visualization.

8



1.6 Visualizing 3D movies in Cesium
Perhaps the most novel and powerful feature of VeRoViz is the ability to easily generate 3D
movies of vehicle routing problems. As shown in Figure 9, the createCesium() function
simply requires the nodes and assignments dataframes, as well as the location where the
Cesium application is installed and the name we wish to give our problem. The VeRoViz
Cesium plugin allows this content to be viewed in a web browser.

1 vrv.createCesium(assignments = myAssignments, nodes = myNodes,
2 cesiumDir = '/home/user/Cesium', problemDir= 'example')

Figure 9: The createCesium() function transforms nodes and assignments dataframes into
interactive 3D visuals. This demo may be tested at https://veroviz.org/cesium_joc.html.

1.7 Visualizing solutions with Gantt charts
Gantt charts showing the timing of vehicle routes, from an assignments dataframe, may be
generated with the createGantt() function. Configuration options exist for adding labels,
hiding/showing grid lines, and grouping vehicles. Gantt charts can be exported as images.

1 # Create (and save) a Gantt chart:
2 vrv.createGantt(assignments = myAssignments, title = 'Vehicle Travel', xAxisLabel = 'time [mm:ss]',
3 xGridFreq = vrv.convertTime(10, 'min', 's'), timeFormat = 'MS',
4 overlayColumn = 'odID', filename = 'myGantt.png')

Figure 10: A Gantt chart for the example problem, where numbers in the boxes are odID
values from the assignments dataframe, describing the origin-destination pairs comprising
each vehicle’s route.

9

https://veroviz.org/cesium_joc.html


2 Utilities
VeRoViz features a large collection of “utility” functions, as described at https://veroviz.
org/docs/veroviz.utilities.html. This section provides an overview of some of these
functions.

2.1 Isochrones
Isochrones are lines representing equal distance or travel time from (or to) a given point. The
VeRoViz isochrones() function makes it easy to obtain this data from the Open Route Service
data provider. Isochrones may be generated for various travel modes, including pedestrian,
cycling, car, and heavy trucks. The addLeafletIsochrones() function displays the resulting
isochrones on a map, as shown in Figure 11.
Isochrone data can be leveraged in heuristics to determine if a destination is within reach.

This may be accomplished by combining the output from the isochrones() function with the
isPointInPoly() utility function, which indicates if a given point is within a polyline. This
has the advantage of only requiring one call to an external data provider (i.e., obtaining the
isochrones), rather than explicitly checking the distance or time required to travel between
two specific points.

1 iso = vrv.isochrones(location = vrv.geocode('Courthouse, Buffalo, NY'), locationType = 'start',
2 travelMode = 'foot-walking', rangeType = 'time',
3 rangeSize = vrv.convertTime(12, 'minutes', 'seconds'),
4 interval = vrv.convertTime(6, 'minutes', 'seconds'), smoothing = 15,
5 dataProvider = 'ors-online', dataProviderArgs = {'APIkey': 'YOUR KEY'})
6 vrv.addLeafletIsochrones(iso=iso)

Figure 11: Isochrones

10

https://veroviz.org/docs/veroviz.utilities.html
https://veroviz.org/docs/veroviz.utilities.html


2.2 Weather
Current and forecasted weather conditions – including the probability of precipitation, wind
speed and direction, and temperature – can be important considerations in vehicle routing
problems, particularly those involving aircraft. The getWeather() function, shown in Figure
12, imports data from OpenWeatherMap.

1 # Get weather data, saved as a dataframe:
2 weatherDF = vrv.getWeather(location = vrv.geocode('Buffalo, NY'),
3 dataProvider = 'openweather', dataProviderArgs = {'APIkey': 'YOUR KEY'})

1 # Display current weather (subset of columns shown)
2 weatherDF[weatherDF['class']=='current'][['sunrise', 'sunset', 'temp', 'feels_like', 'clouds',
3 'weather_description', 'uvi', 'wind_speed', 'wind_deg']]

sunrise sunset temp feels_like clouds weather_description uvi wind_speed wind_deg

0 2020-11-05 11:55:33 2020-11-05 22:02:42 64.2 55.29 75 broken clouds 2.08 12.75 240

1 # Daily forecast (subset of columns and rows shown)
2 # 'pop' --> probability of precipitation
3 weatherDF[weatherDF['class'] == 'daily'][['dt', 'weather_description', 'wind_speed', 'wind_deg',
4 'temp_min', 'temp_max', 'pop']].head()

dt weather_description wind_speed wind_deg temp_min temp_max pop

49 2020-11-05 16:00:00 overcast clouds 15.95 210 55.29 64.20 0.00

50 2020-11-06 16:00:00 scattered clouds 15.17 231 52.39 59.16 0.00

51 2020-11-07 16:00:00 overcast clouds 11.43 229 52.11 61.02 0.00

52 2020-11-08 16:00:00 broken clouds 7.20 215 52.09 64.63 0.00

53 2020-11-09 16:00:00 moderate rain 10.40 249 48.24 66.34 0.97

Figure 12: A sample of available weather data. Hourly forecasts (not displayed above) are
also provided by the getWeather() function.

2.3 Elevation
For vehicle routing problems where elevation changes are important (e.g., electric vehicle
routing, or problems seeking to minimize fuel consumption), VeRoViz provides the getEle-
vationDF() function. This function updates the elevation-related columns of nodes, arcs, and
assignments dataframes, using data from a variety of sources. Figure 13 provides an example
using the U.S. Geological Survey (USGS) as a data provider; elevation data are also available
from Elevation-API and OpenRouteService.

1 # Replace missing start/end elevations in the arcs dataframe, using USGS data:
2 vrv.getElevationDF(dataframe = myArcs, dataProvider = 'usgs')
3 myArcs[['startLat', 'startLon', 'startElevMeters', 'endLat', 'endLon', 'endElevMeters']]

startLat startLon startElevMeters endLat endLon endElevMeters

0 43.003922 -78.697982 185.08 42.974697 -78.798269 183.32

1 42.974697 -78.798269 183.32 42.951958 -78.795942 209.43

2 42.951958 -78.795942 209.43 42.974264 -78.820277 182.85

3 42.974264 -78.820277 182.85 43.003922 -78.697982 185.08

4 43.003922 -78.697982 185.08 42.998253 -78.794730 182.23

5 42.998253 -78.794730 182.23 43.003922 -78.697982 185.08

6 43.003922 -78.697982 185.08 42.993819 -78.802980 182.76

7 42.993819 -78.802980 182.76 43.003922 -78.697982 185.08

Figure 13: Updating an arcs dataframe with elevation data for the starting and ending loca-
tions of each arc.

11



2.4 Finding the nearest point along a path to a location
The closestPointLoc2Assignments() function provides the GPS coordinates along a vehi-
cle’s route that is closest (in Euclidean distance) to a given location. In other words, this
function determines where a vehicle’s route will pass nearest some location of interest, as
shown in the example of Figure 14. This function may be useful in the context of the close-
enough traveling salesman problem, or in identifying how close a drone route would pass by
a landmark.

1 Buffalo_Airport = vrv.geocode('BUF')
2
3 closestPoints = vrv.closestPointLoc2Assignments(loc = Buffalo_Airport, assignments = myAssignments,
4 objectID = 'Truck')
5 closestPoints

{'Truck': [{'nearestPoint': [42.97795267257247, -78.72511011256127],
'distMeters': 4219.03371220169}]}

1 # Draw the routes and the point on the map:
2 myMap = vrv.createLeaflet(nodes = myNodes, arcs = myAssignments)
3 myMap = vrv.addLeafletMarker(mapObject = myMap, center = Buffalo_Airport, radius = 18,
4 text = 'BUF', fontColor = 'black', fontSize = 10)
5 myMap = vrv.addLeafletIcon(mapObject = myMap, location = closestPoints['Truck'][0]['nearestPoint'],
6 iconType = 'star', iconColor = 'red')
7 myMap

Figure 14: The red starred marker identifies the point along the truck’s route (orange) that
is closest to the Buffalo airport (BUF).

12



2.5 Finding vehicle locations at a particular time
The findLocsAtTime() function returns the location of each vehicle at a given time. Such
information is useful in coordinated vehicle routing, or in dynamic routing problems (e.g.,
dial-a-ride). Additionally, this function can be employed within a discrete event simulation
environment to track vehicle locations. Figure 15 provides an example for the two-vehicle
demonstration problem.

1 # Where are we 10 minutes into the route?
2 currentLocs = vrv.findLocsAtTime(
3 assignments = myAssignments[myAssignments['objectID'].isin(['Drone', 'Truck'])], timeSec = 10*60)
4 currentLocs # [lat, lon, altMeters] for each objectID

{'Truck': [42.97807465673398, -78.76495422989909, 0.0],
'Drone': [42.99905458805267, -78.78118391817928, 106.68]}

1 myMap = vrv.createLeaflet(nodes = myNodes, arcs = myAssignments)
2 for objectID in ['Truck', 'Drone']:
3 myMap = vrv.addLeafletIcon(mapObject = myMap, location = currentLocs[objectID],
4 iconType = 'flag', iconColor = 'red')
5 myMap

Figure 15: The findLocsAtTime() function provides the GPS coordinates and altitude of each
vehicle at a given time. The red markers show the GPS locations for the drone and truck 10
minutes from their departures from the depot.

13


	Demonstration
	Generate nodes
	Travel time and distance matrices
	Generate a solution
	Visualizing vehicle routes with simple arcs
	Visualizing routes with detailed assignments dataframes
	Visualizing 3D movies in Cesium
	Visualizing solutions with Gantt charts

	Utilities
	Isochrones
	Weather
	Elevation
	Finding the nearest point along a path to a location
	Finding vehicle locations at a particular time


